The above graph denotes a gaussian white noise that was generated using 100 random numbers in R.
rnorm : Used to generate a random normal distribution.
ACF : Autocorrelation function display the cross-correlation of a signal with itself. In the above graph you can see none of the lags of the signal are dependent on the signal itself. That supports the theory that this is a gaussian white noise.
Also, notice in the time series graph above, the signal looks mean reverting and the volatility appears to be constant. That proves that the signal is a covariance stationary process.
Below is the code that generate the graph above:
No comments:
Post a Comment